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After the second year of the project, the main focus shifted from nonlinear fiber optical
simulation to quantum semiconductor simulation. However, the nonlinear optical
simulation was still pursued, principally by Jun Liu, a graduate student, who simulated a
three dimensional optical soliton. Besides the nonlinear optical simulation and the
quantum semiconductor simulation, some effort was put into applying the methods that
have already been developed for use in terahertz pulse shaping. This was primarily done
by another graduate student, Sunil Nikkanti. This has proved to be a very promising
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Nonlinear Optical Fiber Simulation

A paper documenting our developments in three-dimensional optical fiber simulation has
appeared in the literatare. A graduate student, Jun Liu, used these developments to
simulate three-dimensional soliton simulation in an optical fiber. This was his master’s
thesis.

Quantum Semiconductor Simulation

The quantum semiconductor simulation project has been pursued with the intention of
developing quantum switching mechanisms. This is being done in collaboration with
the Quantum Optics Theory Group of the Physics Department of Washington State
University headed by Professor David Citrin. A time domain formulation of the
Schroedinger equation has been developed. The specific configuration being simulated
is a quantum dot. This was chosen because both theoretical and experimental data are
available for verification of the accuracy of the simulation ( R. C. Ashoori, “Electrons in
Artificial Atoms,” Nature, 379, 413-419, 1996). Two major milestones have been
achieved so far:

Determination of the Eigenstates of Arbitrary Structures.

The analytical description of particles in a quantum structure is available only for the
simplest canonical configurations. Using a finite-difference formulation of the
Shroedinger equations, a method has been developed to determine the eigenenergies and
eigenfunctions of any arbitrary quantum structure. (Please see enclosed manuscript.)

Multiple particles in a quantum dot

The interaction of two electrons in a quantum dot under the influence of a magnetic field
has been simulated using Schroedinger equation and the Hartree-Folk approximation.
The Hartree-Folk formulation takes into account the Coulomb interaction of the two
particles as well as the exchange term, which is a purely quantum mechanical effect
based on the relative spins of the two particles. The Hartree-Folk formulation is
computationally very intensive, and can be analytically calculated for only the simplest
cases. By reformulating the Coulomb and exchange terms as convolutions, a fast two-
dimensional Fourier transform algorithm available on the Cray T90 of the San Diego
Supercomputer Center has made these calculations tractable. Thus far, the interaction of
two particles in a quantum dot subject to variable external magnetic field has been
simulated. The resulting energy levels are found to be in agreement with those available
in the literature. (Please see the enclosed manuscript.)
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Simulation of Terahertz Pulse Generation

The generation of very short, high frequency pulses has become of great interest to the
physics community over the past few years. The physical processes that produce
terahertz (THz) pulses do not produce the short, well defined pulses for applications
such as time-domain spectroscopy. They require filtering. One such filtering technique
is spatiotemporal shaping in which the pulse is passed through a slot in a metal screen.
This is an application well suited to simulation, where different aperture configurations
can be tested without the construction of expensive and time consuming experiments. A
paper appeared using the finite-difference time-domain method to do a two-dimensional
simulation. [J. Bromage, et al, “Spatiotemporal shaping of half-cycle terahertz pulse by
diffraction through conductive apertures of finite thickness,” J. Optical Soc. Amer. B,
vol. 15, pp 1399-1405, April, 1998.] Clearly a three-dimensional simulation is needed
to account for all parameters. However, the three-dimensional simulation of the far field
of the pulse from an aperture is a computationally prohibitively large problem. A
method was developed to calculate the far field from an aperture while simulating only
the immediate area around the aperture. (This is described in a paper.) Furthermore, the
symmetry of the problem is exploited to cut the computation by one fourth. Using these
methods and state-of-the-art computer resources, the three-dimensional simulation of
THz pulse was accomplished. A graduate student, Sunil Nekkanti, has used this
method for terahertz pulse shaping. (Please see enclosed manuscript.) This was the
subject of his master’s thesis.

(5) Technology Transfer
N/A
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Abstract

A time-domain simulation method is presented that utilizes the Hartree-Fock formulation

to characterize two particles in a quantum dot. The basis of the simulation is the finite-

difference time-domain (FDTD) method. The computation is made tractable by formulating the

Coulomb and exchange terms as digital filtering problems, and utilizing two-dimensional fast

Fourier transforms. Two-electron wavepacket dynamics are calculated.
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Supercomputer Center. D. S. Citrin was supported by the Office of Naval Research and by the
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I. Introduction

Semiconductor quantum dots (QD) have attracted great attention due to the quantization
of carriers in three dimensions, leading to discrete spectra [1]. Among other things, they
present the possibility of studying the detailed interaction of particles in a controlled
environment [2]. The advent of measurement techniques, such as single-electron capacitance
spectroscopy (SECS), has made possible the determination of the energy of individual particles
as they are added to a QD under various conditions [3, 4].

Along with the growing body of experimental work, there have been efforts to
characterize these interactions through approximation techniques [5, 6, 7]. The Hartree-Fock
approximation is a particularly convenient approach for the interaction of multiple particles [6].
This paper presents a formulation of the Hartree-Fock approximation using the finite-difference
time-domain (FDTD) method. The FDTD method is one of the most widely used methods in
electromagnetic simulation [8, 9] and it has recently been applied to the simulation of the
Schroedinger equation [9, 10]. In this paper, the simulation of two electrons is presented. This
technique allows for the simulation of two-electron wavepacket dynamics as well as for the
determination of energy eigenstates. The computational requirements of the Coulomb and
exchange terms are partly circumvented by using signal-processing techniques and a two-
dimensional fast Fourier Transform (FFT). While the resulting simulation is computationally
intense, it is well within the realm of state-of-the-art computing platforms.

Section II describes the FDTD formulation of a particle in a two-dimensional harmonic
oscillator in a magnetic field. This is the usual characterization of a quantum dot [2]. Section
TII shows results of the simulation of the first few eigenstates under the influence of a magnetic
field and verifies their accuracy by comparison with analytic results. In Section IV, the
implementation of the Hartree-Fock approximation for the simulation of two particles is
described [11]. In Section V, the simulation of two electrons in a quantum dot is presented.
The chemical potential of the first two electrons is found to be in excellent agreement with

results available in the literature [1, 2].
II. FDTD Formulation of the Schroedinger Equation
Basic Formulation

We treat a QD in which the confinement in the z direction is much stronger than in the x and
y directions. Thus, the energy-level separation associated with the z direction quantization is much
larger than any other energy scale in the problem. We therefore assume a single z-quantized state.
In addition, in the present study we neglect the spin-orbit interaction which is relatively small.

(This will be topic of a future study.) The time-domain formulation of the Schroedinger equation




for a particle in a two-dimensional harmonic oscillator subject to a magnetic field in the

perpendicular direction is then [12]
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where E, is the ground state energy of the harmonic oscillator and B is the strength of the
magnetic field, which is assumed to be uniform and in the z direction. Next, ¥ is separated
into real and imaginary parts:

V() =Y, () iy, (1)
Then the finite-difference approximations to the spatial and temporal derivatives are taken.

Equation (2) becomes two coupled equations, the real part given by
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There is a corresponding equation to calculate the imaginary part. Here we discretize
both time and space; the time step is indexed by n, the space grid by i and j. Details of the

above derivation are given in [10].




III. Simulation of One Particle in a Quantum Dot

In this section, we will use the techniques described in the previous section to simulate
the lowest order eigenstates in a quantum dot. Following the work of Ashoori et al. [4], we
will assume the dot is adequately described by a two-dimensional harmonic oscillator with a
fundamental energy splitting between successive single-particle levels of 5.4 meV. The
eigenstates are well known [12]. A few of the lower order states are shown in Fig. 1. For
simplicity, we only plot the real part of the wavefunction y. We describe the states by the
quantum numbers (n, I), where n, the principal quantum number, is a positive integer
corresponding to the number of nodes in the wavefunction moving outward from the center,
and [ is the axial quantum number such that 2 |Il is the number of nodes moving in a circle on a
constant radius around the dot [2]. The integer [ can be positive or negative corresponding to a
waveform that is moving counterclockwise or clockwise, respectively, around the center of the
dot. The energy of the function is give by [2]

E,, =ha,2n+11+1). 4

Figure 2 is a time-lapsed simulation of the real part of the (0,1) state. Its initial energy is
10.8 meV, as calculated by Eq. (4). After 0.128 ps, it has moved one-third of a revolution
counterclockwise. After 0.255 ps, it has gone two-thirds of a revolution, and after 0.383 ps, it
has returned to its original position. This is not surprising, since this is the revival time
corresponding to 10.8 meV. This simulation used cell sizes of 2 nm and time steps of 0.05 fs.
The total simulation space was 60 by 60 cells to simulate an area of 120 by 120 nm.

Figure 3 is a similar simulation of the (0, 1) state, but with an increasing magnetic field.
Now the total energy is calculated by the formula [2]

2
E,, :lh—a;—‘+h (%) + @y - @n+111+1), )

where @, = eB/ m is the cyclotron frequency. Note that when the particle is initialized without

the magnetic field, the energy of 10.8 meV is evenly divided between kinetic and potential
energy. The radius is 18.9 nm. (The values of energy and radius are actually expectation
values of the corresponding observables.) As the magnetic field is applied, a greater portion of
the energy is potential energy, and the radius becomes smaller. These two phenomena
correspond to the additional confinement caused by the magnetic field. The total energies
correspond closely with the analytic energy calculated by Eq.(5).

Such a simulation was made for each of the six lowest energy levels and is plotted in
Fig. 4. These are the Fock-Darwin levels [1]. Results are shown for the FDTD simulation and
the analytic values calculated from Eq. (5). In general, agreement is excellent. Some




discrepancy occurs for the (0, 2) level at magnetic field levels above 6 T. The (0, 2) function is
a relatively complex one (Fig. 1), and as it is compressed into tighter radii, the spatial resolution
of 2 nm is no longer adequate to maintain accuracy. Obviously, this could be overcome by a

higher resolution and a larger simulation space.
IV. The Hartree-Fock Approximation.

The Hartree-Fock formulation for two particles results in the following coupled

equations [12]:
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In each equation, the third term on the right is the Coulomb potentlal and the last term is the

exchange term. 6_“82 is the Kroneker delta relating the spins s, and s, of the particles. Only

when the spins are in the same direction does the exchange term enter into the calculations.
Both y, and y, are complex variables, and each equation results in two separate equations,
similar to those described in the previous section. However, they are coupled by the Coulomb
and exchange terms. Note that each of these integrals is a spatial integral that must be calculated
for each position in the problem space. This threatens to overwhelm the computation. This is
largely overcome by recasting these integrals as convolutions and using a fast two-dimensional
Fourier transform for the calculation.

We begin by taking the Coulomb integral of the first equation, Eq. (6a), which we will
call 1,(r),

2
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This can be written in the xy co-ordinates as
ICl(xl’yl) = dezjdyz h(x, = X35y, = Y)f (X3, ¥,) -

Convolution in the spatial domain gives multiplication in the k domain, so taking the two-

dimensional Fourier transforms of Eq. (7) gives
I,(k, .k, ) = H(k, .k, ) Fk, .k, ).
We have eliminated the integration. Of course, a two-dimensional Fourier transform

must be carried out at every time step to get F (kxnkyl) because the corresponding value of

f(xy,y,)= |l//2 (x,,y, )|2 is updated at every time step; then an inverse transform is performed to

get I(x,, ). (H(k,,k,) need only be calculated once at the beginning of the program.) Fast

Fourier transforms are usually implemented in specialized subroutines that use complex arrays.
Since the calculation of the Coulomb potential involves only real numbers, both Coulomb
integrals can be calculated at once, one in the real buffer and one in the imaginary buffer.

Now we turn our attention to the calculation of the exchange terms. The two exchange
terms of Eqgs. (6 a) and (6 b) are

Ipy = J.er £ |(}?_)t;|(5) ’ (8 a)
I = [ 0 |(rlr11v:22|(r1) . 8 b)

Note that r, and r, in Eqgs. (8 a) and (8 b) are just integration parameters. If they were both set
to r, for instance, then we can see that (8 a) and (8 b) are just complex conjugates of each other.

Therefore, it is only necessary to calculate one integral and take the complex conjugate of it to

get the other. Of course, we will use the same basic approach as used in the calculation of the

Coulomb potentials: take the FFT of , (1), (r,), multiply it by the transformed version of the

function 1/ |r1 - rzl , and take the inverse FFT of the result.

The following is the procedure that must take place at every time step:

1) One forward FFT to get the Fourier transform of the magnitudes of |!//1 (n )I2 and |1;/2(r2)|2 , a

multiplication by H! (kxl .k, ), and then an inverse FFT to get the two Coulomb integrals.

2) A forward FFT of v, (r,)y,(r,), multiplication by H(kxl,kyl ), and an inverse FFT to get

the exchange term for y,(r,). The exchange term for y,(r,) is just the complex conjugate.
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V. Simulation of Two Particles in a Quantum Dot

In this section, we use the FDTD formulation of the Hartree-Fock approximation
described in the previous section to simulate two electrons in a quantum dot as described by the
two-dimensional harmonic oscillator potential. We also use the same configuration in the FDTD
program, i. e., a cell size of 2 nm, a time step of 0.05 fs, and a total problem space that is 60 by
60 cells. The difference is that there are two simultaneous simulations that are coupled [Eqs.
(6a) and (6b)]. As a reference, we start with the simulation of two electrons, initially at the
(0,0) state and the (0,-1) state, without the Coulomb or exchange coupling (Fig. 5). In both
cases, the energy is evenly divided between kinetic and potential. Figure 6 is the same two
states, but with only the Coulomb interaction. (This corresponds to the case where the particles
have opposing spins.) The (0,0) particle has not changed substantially but the (0,-1) has
effectively been pushed outward, in keeping with the Coulomb repulsion. This is evidenced by
the radius, which has increased, and the fact that the particle has substantially increased its
potential energy since it was pushed further outward where the potential is higher. Note also
that, besides the energies of the individual particles, there is a Coulomb energy due to their
interaction. Figure 7 shows the same two particles with both Coulomb and exchange
interactions, corresponding to the case where the particles have the same spin. Notice that the
exchange interaction tends to pull the particles together as evidenced by the increase in radius of
the (0,0) particle and decrease of the radius of the (0,-1) particle compared to Fig. 6. Note also
that the Coulomb energy has increased with this increased closeness, but the exchange energy is
a negative quantity that reduces the total energy of the system.

The recent development of the single-electron capacitance spectroscopy (SECS)
technique allows experimentalists to observe the energy levels of individual electrons being
added to a quantum dot [3]. This technique records the energy needed to add an electron under
the influence of a magnetic field, a quantity known as the chemical potential. We will attempt to
use the FDTD method to simulate the behavior of the first two electrons.

Or course, the first particle is just the lowest level of the Fock-Darwin level model in
Fig. 4. It is repeated as the dashed line labeled “First Particle” in Fig. 8. For the second
electron, we must account for the Coulomb interaction in all cases and the exchange interaction
when the particles have the same spins. For instance, we may assume that the first particle has
spin up, since this is the lowest energy state when the magnetic field is applied. Therefore, the
second particle will start in the (0,0) state with spin down. It will have Coulomb but no
exchange interaction with the first particle. The additional energy to the system is plotted as the
dash-dot line labeled “Singlet” in Fig. 8. Remember, this is the chemical potential, so it is the
energy of the second particle itself, plus the Coulomb energy. Suppose the second particle were
a (0,-1) state with spin up. It would have a Coulomb and an exchange interaction with the first

7




particle. The additional energy as a function of the magnetic field is plotted as the solid line
labeled “Triplet” in Fig. 8. Note that these two lines intersect at about 1.1 T, indicated by the
arrow. These two lines are needed to simulate the second particle, because the particle starts in
state (0,0), spin down, and after the magnetic field reaches 1.1 T, it flips its spin and goes to the
lower (0,-1) state.

Palecios et al. [5] carried out a theoretical study using exact diagonalization and the
unrestricted Hartree-Fock approximation for up to 15 electrons. Their data, along with that of
the FDTD simulation, are plotted in Fig. 9 for the first two electrons. (The two lines of the
second particle from Fig. 8 have been consolidated to one, but the arrow still marks the
crossover points.) Clearly, the agreement is very good.

VI. Conclusion

We have presented explicit space- and time-domain Hartree-Fock simulations of two-
electron wavepacket dynamics in quantum dots based on the FDTD method. From these
simulations, we have extracted the eigenstates and eigenenergies. The results are in excellent
agreement with the existing values in the literature.

Although the calculations presented here do not in and of themselves yield new physical
results, the power of the FDTD technique must be borne in mind. As an explicit space-domain
technique, one can avoid difficulties associated with constructing single-particle orbitals, which
are used in computations based on Slater determinants [13]. Although we chose a parabolic
confinement potential, there is no additional cost in choosing any other potential. A Slater-
determinant-based calculation would require computing the single-particle orbitals for each
potential chosen. Of course, the tradeoff is in the size of the spatial mesh chosen for our
calculations.

The calculations presented here are also easily generalized to more particles; we estimate
that for the values of the parameters used here, up to four electrons should not be too
computationally taxing. In addition, simulations including spin-orbit coupling are under way
and will be the topic of a future publication. Finally, a time-domain approach allows one to
explore manifestly dynamical properties, such as wavepacket dynamics or the response to time-
dependent fields.
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Figure Captions

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

The real part of the wave functions of four of the lowest eigenstates of a two-
dimensional harmonic oscillator with a ground state of 5.4 meV.

The time evolution of the real part of the wavefunction of the (0,1) state through one
revival. Note that the wavefunction moves counterclockwise. The imaginary part of
this wavefunction is identical, but the lobes are 90 degrees out of phase to the real
function shown here. The wavefunction of the (0,-1) state would move in exactly

the same way, but in the clockwise directions.

Contour plot of the real part of the waveform for the (0,1) state with an increasing
magnetic field in the perpendicular direction. The increased B field leads to a tighter
confinement, as evidenced by the smaller radii and the increase in energy. (Energies
are in meV, radii are in nm.)

Plot of the Fock-Darwin levels for a two dimensional harmonic oscillator with a
ground state energy of 5.4 meV.

The real parts of the wavefunctions of the (0,0) and (0,-1) states of the two-
dimensional harmonic oscillator. On the left side are mesh diagrams and on the right
side are contour plots of the same functions. These are two independent particles,
i.e., there is neither a Coulomb nor an exchange interactions.

The same two particles as shown in Fig. 5, but with the Coulomb interactions added
(This corresponds to two particles with opposite spins). The Coulomb repulsion
has added to the energy of each particle. The radius of the (0,-1) particle has
increased substantially because it has been pushed outwards. In addition to the
kinetic and potential energies of each particle, there is an energy of 6.67 meV
associated with the repulsion of the two particles to each other.

The same two particles as shown in Fig. 5, but with both the Coulomb and
exchange interactions added (The two particles have the same spins). The exchange
has decreased the energy of each particle. The radius of the (0,-1) particle has
moved a little back towards the center. In addition to the kinetic and potential
energies of each particle, there is an energy of 7.38 meV associated with the
repulsion of the two particles to each other and one of -2.58 meV associated with the

exchange force.
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Figure 8 The chemical potential as function of the magnetic field for the first two particles in a
quantum dot. The plot of the first particle is simply the lowest level of the Fock-
Darwin plot of Fig. 4. The second particle, however, starts off in the singlet
configuration of the (0,0) state and flips its spin to the triplet configuration to take
advantage of the lower energy level of the (0,-1) state as the magnetic field increases
above 1.1 T.

Figure 9 Comparison of the simulated FDTD data (as shown by solid lines) and the calculated
data of Palacious et al. [5] (as shown by the asterisks).
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The real part of the wave functions of four of the lowest eigenstates of a two-

dimensional harmonic oscillator with a ground state of 5.4 meV.
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Figure 2 The time evolution of the real part of the wavefunction of the (0,1) state
through one revival. Note that the wavefunction moves counterclockwise. The
imaginary part of this wavefunction is identical, but the lobes are 90 degrees out of
phase to the real function shown here. The wavefunction of the (0,-1) state would
move in exactly the same way, but in the clockwise directions.
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energy. (Energies are in meV, radii are in nm.)
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has added to the energy of each particle. The radius of the (0,-1) particle has increased
substantially because it has been pushed outwards. In addition to the kinetic and
potential energies of each particle, there is an energy of 6.67 meV associated with the
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Figure 7. The same two particles as shown in Fig. 5, but with both the Coulomb and
exchange interactions added (The two particles have the same spins). The exchange
has decreased the energy of each particle. The radius of the (0,-1) particle has moved a
little back towards the center. In addition to the kinetic and potential energies of each
particle, there is an energy of 7.38 meV associated with the repulsion of the two
particles to each other, and one of -2.58 meV associated with the exchange force.
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Abstract

With the present interest in nanostructures, such as quantum dots, a need exists to have
a flexible method to be able to determine eigenvalues and eigenstates for those structures that do
not lend themselves to existing analytical methods. In this paper we present a method that
accomplishes this by using a simulation of the Schroedinger equation based on the finite-
difference time-domain (FDTD) method. This method is capable of simulating any structure
within the limits of discritization. By initializing a simulation with a test function, the
eigenfrequencies are determined through a Fourier transform of the resulting time-domain data
collected at a sample point. Another simulation implements a discrete Fourier transform at the
eigenfrequencies at every cell in the problem space, from which the eigenfunctions can be

constructed.

Keywords: Quantum dots, Quantum theory, FDTD methods, Eigenvalues
and eigenfunctions, Semiconductor device modeling.
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1. Introduction

There is an increasing interest in semiconductor structures on the order of hundreds of
nanometers as potential computing devices and for other applications [1]. However, for
anything but the simplest canonical structures, a solution for the quantum mechanical states of
electrons is difficult. For this reason, numerical rather than analytic approaches must be used to

determine the eigenenergies and eigenfunctions of such structures.

In this paper we present a formulation using the finite-difference time-domain (FDTD)
method [2, 3]. This method is widely used in electromagnetic simulation. Here we present the
FDTD formulation of the Schroedinger equation; an explicit method that begins with the time-
domain Schroedinger equation and approximates the temporal and spatial derivatives as
difference equations [3]. In this formulation, the potential need not be a simple structure (e.g. a
harmonic oscillator or square well); any arbitrary configuration can be simulated. Furthermore,
the influence of a magnetic field is described. The expectation values of observables, such as
kinetic and potential energy, can be easily calculated.

The determination of eigenenergies is accomplished by storing the time-domain data
from a test point during a simulation and determining the eigenfrequencies by post processing,
i.e., taking the Fourier transform of the stored time-domain data. The eigenfunctions are
reconstructed by rerunning the simulation and taking a discrete Fourier transform at the
previously determined eigenfrequencies. This is accomplished by initializing the problem space
with a test function and then carrying out a discrete Fourier analysis at the eigenfrequencies at
every point in the problem space [4, 5]. At the end of the simulation, one has the amplitudes
and phases of the eigenfunctions at every point within the problem space for each
eigenfrequency. From this information, one can determine the eigenfunctions.

We begin with a description of the FDTD formulation of the Schroedinger equation. As
an initial example, we describe the simulation of a quantum dot, which is implemented by a
two-dimensional harmonic oscillator simulation [6]: the third dimension can be assumed to be
well confined. From the standpoint of the numerical technique, there is nothing special about a
harmonic oscillator potential. We use this to illustrate the method because it has an analytic
solution, from which we can verify the accuracy of the FDTD simulation.

Finally, we take a “stadium” potential to use the full power of the method to determine

the low lying eigenfunctions in a structure for which there is no analytic solution.




II. FDTD Formulation of the Schroedinger Equation
Basic Formulation

The time dependent Schroedinger equation is given by [7]

2
ih_al(’_’tl = _ﬁ—sz/(r, 1)+ V(r,t)-y(r.t)
ot 2m
or
WD i gy~ Lyt i 0

To avoid using complex numbers, we will split the variable y(r,?) into its real and imaginary

components:

v(r,t) =y, () + iy, (D). 2)
Inserting Eq. (2) into Eq. (1) and separating the real and imaginary parts results in the following
coupled set of equations:

al/,rea (r’t) h 1
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We begin by assuming a two-dimensional space. We write ¥"(i,j) =y (i-Ax, j-Ax,n-At)
where i, j, and n are indices and Ax and Ar are the spatial and temporal steps, respectively.
(The same spatial interval Ax is used in both the x and y directions.) Starting with Eq. (3a), the

finite-difference approximations in space and time result in
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from which we get
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The two coupled equations can then be written

Y reat(6,7) = W™ rear (i, J)
At h {w”‘”zmg G+17) = 4y imag (0, ) + " imag (i — Lj)] (4 2)

- n=1/2.

Ax* 2m F Y g (5, A D)+ W P imag (1,7 — 1)

At . n— i
+—h_V(l"])l// l/2imag(la])
l//n+l/2imag (i,j) — Wn_lnimag (i,])
At R [‘/’"reaz(i +1,7) = 29 e (i, /) + Y rea (i — l.j)}

f AR | (4b)
Ax° 2m -+ v/nreal (i,j + 1) + W"real(i,] - 1)

At . ..
_7‘/(11]) W real(l,_]) -
Harmonic Oscillator Simulation

One of the well-known canonical problems in quantum mechanics is the harmonic
oscillator. The harmonic oscillator potential is given by [7]

V(x,y)= %ko (x*+5%).
In the finite-difference formulation, this is expressed as
v(i,j)=%k0-[(i—ic)-Ax+(j—jc)-Ax]2. 5)
It is centered around (ic, jc) , the middle of the problem space. The parameter k, is
k,=m-o,

and @, the frequency of oscillation, is related to the ground state energy of the system by
E, =ha,. (6)




An Electron in a Magnetic Field

This section describes the additional influence of a magnetic field oriented in the z

direction. We do this by simulating the vector potentlal A 7]
A=B)(-y i+x), (7N

which gives
B=VxA=2-B,Z

where 7 is a unit vector in the z direction.

The following formalism implements this into the Schroedinger equation:

v, 1 (h ’
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The three A terms used in Eq. (8) are determined by
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Putting these into Eq. (8) results in the following:
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Now we take the finite-difference approximations to the spatial and temporal derivatives, along
with the formulation of the harmonic oscillator potential of Eq. (5):
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Of course, there will be a similar equation corresponding to the imaginary part of y.

Calculating the Observables

Two quantities of importance in quantum mechanics are the expected values of the
kinetic energy and the potential energy. They are calculated from v(x,y) as follows:

Kinetic Energy
The expected value of the kinetic energy is given by

W, B e s
() =y Vv )=~ [_(¥'Vy)dr.

The Laplacian operator V? is approximated by
V2 o 1 ll,real(i - 1’ j) - 4Wreal(i’j) + l//real(i + 17 j)
Wreal(l’-]):_—_f .. .. .
(Ax) +Wreal(l’j - 1) + l)Ureal(l’.l + 1)

The kinetic energy in the simulation is calculated by
N N
(T)=- Y 2{[y/,ea,(i, D)= Wi G j)] : [Vzvf,eaz(i’ NV, j)]}. (11)

e j=1 i=1
Potential Energy

7]
2-m

The expected value of the potential is
had 2
VY= 1viy)= [ veylw(xy) dr,
which is calculated by

(V) = 2 ZV(Z,]) : [Wzreal(i, ]) + Wzimag(i,j)]. (12)
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III. Determining the Eigenfunctions

The first step in determining the eigenfunctions is to determine the corresponding
eigenfrequencies. We do this by initiating the problem with a test function at a point in the
problem space and storing the time-domain data at the point of origin of the test. The test
function is chosen as a narrow pulse to insure that it will be a superposition of as many of the
eigenfunctions as possible. After a sufficient number of time steps (typically about 30,000 to
50,000), the program is halted, and a Fourier analysis of the time domain data collected at the
source point is performed. The peaks in the Fourier analysis determine the eigenfrequencies.

Once we determine the eigenfrequencies, the eigenfunctions can be constructed.
Because the Fourier analysis resulted in a peak in the Fourier domain, we know that the
eigenfunction was present in the original test function. Therefore, by performing another
Fourier analysis at every point in the problem space at that frequency, the amplitude and phase
of that eigenfunction can be reconstructed.

The Fourier analysis to determine the eigenfrequencies is accomplished by post
processing, i. €., an analysis of the data takes place after the simulation is complete at only one
data point within the problem space. To construct the eigenfrequencies, however, we need to
perform the Fourier analysis everywhere in the problem space, but for a limited number of
frequencies. This is done by a discrete Fourier transform (DFT) during the simulation,

sometimes referred to as a “running Fourier transform” [4, 5].

To carry out the Fourier analysis at one frequency, say f;, we could compute the

following:
Y, = j w(t) et (13)
0

(We take the lower level of integration to be zero because we assume all functions are causal,
since we initialize them to zero when the simulation begins.) Taking Eq. (13) into the sampled

time domain gives

N
Y(n-Ar) = z[wm,(n A iy, (- At)] [cos@afn- Af)+isin(2nfn - AD)]
n=0

or




¥, (N-A)= i[y/m,(n - A1) COSQAAL - 1) = Y, (n- AD) -sinrfiAt-m)| (142)
n=0

¥, (N-A= 2[1//,6“,(;1  AD)SINQAL AL 1) + Y (- A1) -cOSQrf,At- )] (14b)

Two equations like (14 a) and (14 b) are needed for every frequency of interest. They
are calculated at every cell in the problem space. This is made possible by noticing that the
summation in Eq. (14a), for instance, can be calculated by the following simple equation while

the simulation program is running:

¥, (N-A)=¥, (N-1-A1)
(Ve (1 AV COSQRAFAL 1) = Y (- A1) sin2f, At ).

At every point N, the new value is calculated by adding one more term to the value at N-1.

When the program has run for a sufficient length of time, the results of Eq. (14 a) and
(14.b) are used to calculated the amplitude and phase at that frequency. These are used to
reconstruct the time-domain eigenfunctions. This process is illustrated in Fig. 1. Note that
there is one optional step indicated by the dashed line. Once the eigenfunctions have been
determined, one of them can be used to initialize the FDTD program. This is useful to insure
that it is indeed an eigenfunction that remains stable.

IV. Determining the Eigenfunctions of a Harmonic Oscillator Potential

In this section, we will determine the eigenfunctions and eigenvalues of a harmonic
oscillator potential. This is a problem with an analytic solution which provides a check of the
accuracy of the method. We will use a two-dimensional harmonic oscillator potential with a
ground state energy of 2 meV. The cells in the simulation program are 5 nanometers (nm) and
the time steps are 0.1 femtoseconds [Ax and A¢, respectively, in Eq. (10)]. The problem space
is 50x50, effectively modeling an area which is 250x250 nm. We begin by initializing the
problem with a test function in the middle of the problem space (Fig. 2). This is a Gaussian
pulse with an envelope of 15 nm. Note the values of kinetic and potential energy, as calculated
by Eq. (11) and (12). Since this test particle is sitting on the bottom of the potential, it initially
has very little potential energy. After 2000 iterations, or 0.2 picoseconds (ps), the wave
function has begun to expand outward. It has exchanged some of its kinetic energy for potential
energy, but the total energy remains the same. The waveform continues oscillating in and out.




After 50,000 iterations (5 ps), the simulation is halted. Figure 3 shows the time domain data at
the source point. The Fourier transform of this data is shown in Fig. 4a. The first few peaks
occur at 2, 6, 10, and 14 meV where frequencies have been converted to energies by

multiplication by Planck’s constant.

We initiate the FDTD simulation once again with the same test function. However, this
time the program takes the discrete Fourier transform at the frequencies corresponding to the
above-mentioned energies (0.48, 1.45, 2.42, and 3.39 THz). At the end of the simulation, the

Fourier data is used to reconstruct the eigenfunctions shown in Fig. 4 (b).

The two-dimensional harmonic oscillator eigenfunctions can be characterized by the
quantum numbers r and [, where n is a positive integer corresponding to the number of nodes in
the wave function as one moves out radially from the center, the principle quantum number [1].
The other number [ corresponds to angular momentum, and is clearly 0 for all of these functions
since they are all radially symmetric. The eigenenergies corresponding to the quantum numbers

n, [ are
E,, = E,(2n+|l]+1), (15)
where E, is 2 meV for the present case. Given that /=0, the four lowest states correspond to n

=0, 1, 2, and 3, which result in energies of 2, 6, 10, and 14 meV, as we had determined from
Fig. 4 a.

That we did not find eigenfunctions for values of I other than zero should not be
surprising since we started with a symmetric test function in a symmetric potential. Suppose,
however, that we begin with a test function 50 nm from the center and initialize it with a wave
function that has a wavelength of 100 nm and a Gaussian envelope of 35 nm (Fig 5). Note that
this test function starts with significant potential as well as kinetic energy. As the simulation
progresses, the function moves around the potential, maintaining constant values of kinetic and
potential energies, since it remains at about a constant level in the potential. After 5 ps, the
simulation is halted, and we have the time-domain data at the source point (Fig. 6). After doing
a Fourier transform, we have the data of Fig. 7(a). The peak at 2 meV will be the same (n=0,
1=0) eigenfunction of Fig. 4(b), so we will run the discrete Fourier transform at 4, 6, 8, and 10

meV. The resulting eigenfunctions are shown in Fig. 7(b). Note that these all have n = 0, and

positive integer values of / { 2|l] is the number of nodes moving circumferentially about the dot
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[11}. The energy values correspond to those calculated by Eq. (15) for [ =1, 2, 3, and 4.

Obviously, we could run other test functions that would result in mixed values of n and L

Suppose we have the same problem with a magnetic field of 2 Telsa. The magnetic field
has its greatest effect on states with angular momentum, so we will rerun the previous
simulation with a particle of wavelength of 100 nm in a Gaussian envelope of 35 nm initialized
50 nm from the center. The resulting time-domain function is similar in form to Fig. 6, but
results in the Fourier amplitude of Fig. 8(a). The pattern is the same, but the peaks have been
shifted. Specifically, the I = 1 state has shifted from 4 meV to 6.7 meV, the [ = 2 state from 6 to
10.9 meV, etc. In fact, these are the energy levels predicted from [1]:

E, = [lhwc 12+4(hw, 12) +E, (2n+|l|+1):|, (16)
where @,, is the cyclotron frequency,
wc = é (17)
m

{For m in Eq. (17), we use the reduced mass of an electron in GaAs [1].} The resulting
eigenfunctions in Fig. 9(b) are similar to those in Fig. 7(b), except they are slightly closer to the
center, which results from the additional confinement imposed by the B field.

V. Eigenfunctions of a Stadium Potential

In this section we will use the same method to find eigenfrequencies and functions of a
configuration whose values and functions are not previously known. We will use the “stadium”
potential [8] illustrated in Fig. 9. This has a ground potential of 0; the stadium is shaped by a
potential barrier of 1 eV. As long as the test functions are on the order of meV, we have almost
complete containment.

We begin by initializing a test function at point A and letting the simulation run for
30,000 iterations. We then take the Fourier transform of the time domain data collected at the
source, which results in the spectrum shown in Fig. 10a. From this, we ascertain that there are
eigenfrequencies at 0.31, 0.88, 1.79, and 2.9 meV. When we rerun the simulation computing
the discrete Fourier transform at these frequencies, we obtain the functions of Fig. 10(b). Note
that we have obtained eigenfunctions that are symmetric in both directions. This is not
surprising, since our test function started from the middle of the stadium.
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In order to look for other eigenfunctions, we repeat the simulation by initializihg the test
function at point B, which results in the frequency response shown in Fig. 11a. The lowest
peak is at 0.31 meV; this is obviously the ground state illustrated in Fig. 10, so there is no sense
redoing this one. We take the next frequencies which are 1.05, 1.67, 2.25, and 2.87 meV. The
result is the functions shown in Fig. 11b.

In order to convince ourselves that these truly are eigenfunctions, we can use them to
initialize the simulation. We will take the eigenfunction at 2.87 meV. Using this, the simulation
was repeated, as illustrated in Fig. 12. As the simulation progresses, there is movement in the
function; but at 1.45 picoseconds, it has returned to its original form. The revival time,
calculated by the inverse eigenfrequency

h _4.14x107"° eV -sec

T o =—= =1.46x107" sec, (18)
E 00283 eV

predicts this. One can also verify that Il//(t)l2 is independent of time.

VI. Discussion

We have described and demonstrated a simulation technique to determine the
eigenfunctions for arbitrary nanostructures. The simulation is based on the finite-difference
time-domain (FDTD) method. The strength of this method is its flexibility; there is no limit to
the complexity of the potential of the structure being simulated, other than what can be
accommodated by the discretization. This method is also capable of simulating the influence of
a magnetic field. The accuracy of the method was demonstrated by simulating a two
dimensional harmonic oscillator with and without the magnetic field. The expected energy
values and eigenfunctions were obtained. The full flexibility of the method was demonstrated
by finding the eigenfunctions of a stadium-shaped potential.

This technique is powerful enough to study the dynamics in systems where the time
dependence plays a central role, such as for wavepackets or in the presence of time-dependent
fields. In the future, we will show that the technique may also be generalized in a
straightforward way to deal with few-electron wavefunctions in quantum dots within the

Hartree-Fock approximation.
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Block diagram for the procedure used to determine the eigenfunctions of an arbitrary

quantum nanostructure.

Time-domain evolution of the testing function initiated at the center of the two-
dimensional harmonic oscillator potential. The original testing function is a
Gaussian envelope of 3 nm. Note that the total energy of the function remains
constant, but there is an exchange between kinetic and potential energy. (Only the

real part of the wavefunction is shown.)
Time-domain data sampled at the source point for the simulation illustrated in Fig. 2.

(a) Fourier analysis of the time-domain data of Fig. 3, (b) Eigenfunctions
reconstructed via the DFT at the eigenfrequencies found in (a).

Time-domain evolution of the testing function initiated 50 nm from the center of the
harmonic oscillator potential. This function was initiated as a waveform with a
wavelength of 100 nm inside a Gaussian envelope of 35 nm, giving it substantial

kinetic energy. (Only the real part of the wavefunction is shown.)
Time-domain data sampled at the source point for the simulation illustrated in Fig. 5.

(a) Fourier analysis of the time-domain data of Fig. 6, (b) Eigenfunctions
reconstructed via the DFT at the eigenfrequencies found in (a).

(a) Fourier analysis of the time-domain data collected for a test function moving in a
magnetic field of 2 Telsa. Note that the form of the Fourier analysis is very similar
to Fig. 7a, but the peaks are shifted. (b) Eigenfunctions reconstructed via the DFT

at the eigenfrequencies found in (a).

Diagram of a “stadium” potential. The inside of the stadium is at zero potential,
while the outside is 1 eV.

(a) Fourier analysis of the time-domain data at source point A for the potential
illustrated in Fig. 9, (b) Eigenfunctions reconstructed via the DFT at the

eigenfrequencies found in (a).

(a) Fourier analysis of the time-domain data at source point B of Fig. 9 for a testing
function initiated at source point B. (b) Eigenfunctions reconstructed via the DFT at

the eigenfrequencies found in (a).

Time evolution of a function in the stadium potential that was initiated from the 2.87

meV eigenfunction of Fig. 11b.




Do an FDTD simulation of a
test function in the potential.

Time domain data
at the observaton points.

Perform a Fourier analysis
of the time-domain data.
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points, from which the eigen
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Repeat the FDTD simulation doing
the discrete Fourier Tranform
(DFT) at the eigen frequencies.
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Plot the time-domain
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data.

Use the amplitude and phase of
one of the eigenfunctions to
inititalize the FDTD simulation.

Figure 1. Block diagram of the procedure used to determine
the eigenfunctions of an arbitrary quantum nanostructure.
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Figure 3. Time-domain data sampled at the source point for the simulation illustrated
in Fig. 2.
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Figure 6. Time-domain data sampled at the source point for the simulation illustrated
in Fig. 5.
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(a) Fourier analysis of the time- domain data at the source point B of Fig.

Eigenfunctions reconstructed via the DFT at the eigenfrequencies found in (a).
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Abstract

The need for short, high-frequency pulses for spectoscopy and imaging has motivated
the search for methods to shape these pulses. Conductive apertures are often used for
spatiotemporal shaping of THz pulses. Computer simulation can facilitate the design of such
apertures by allowing one to evaluate different configurations and their related parameters.
Three-dimensional simulations using the FDTD method with techniques described here make
this possible without the need for extraordinary computer resources. The accuracy of this
method is confirmed by comparison with previously published experimental data. The
versatility of the method is demonstrated by the simulation of apertures of various shapes and

sizes.
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1. Introduction

Over the past few years, terahertz (107” s™') technology has been experiencing
explosive growth. The growth in this area has been fueled largely by the need for faster signal
processing and communications, for high-resolution spectroscopy, atmospheric and
astrophysical remote sensing, and for imaging. A number of methods for the generation of THz
radiation have been developed. Many of these methods use a photoconductive antenna in which
an ultrashort optical pulse is incident upon a strongly biased semiconducting material [1]. Other
methods use heterostructures, such as p-i-n junctions [2] and strained superlattices [3]. Some
of the applications using these radiated THz pulses require a pulse with a specific shape to
improve the prospects for optical control over material behavior and structure. A method for
spatiotemporal .shaping of the THz pulses by a diffraction through conductive apertures in a
two-dimensional space has recently been reported [4]. Simulation of the THz pulse shaping is
desirable because it gives an opportunity to find the kind of pulse shape that can be obtained
using different apertures. Simulation also allows the investigation of the influence of variations
in the parameters much faster and more efficiently than experimental methods.

This paper investigates the effects of the apertures in a three-dimensional problem space.
Three-dimensional simulation is more desirable than two-dimensional simulation for three
primary reasons. First, the shape in the third dimension can be varied. Second, it is desirable
to observe the simulated pulse anywhere in the three-dimensional space and not just be limited
to the single horizontal plane provided by a two-dimensional simulation. Third, the wave
physics of a two-dimensional space is different from that of one- and three- dimensions [5]. In
one- and three-dimensional waves, the shape of the wave is preserved as it travels from its
initial position, whereas in a two-dimensional wave there exists a “wake” that trails off after the
pulse as it travels forward in time.

To simulate the far field of the aperture in a three-dimensional problem space,

prohibitively large amounts of core computer memory would normally be required. To




overcome this, a transformation is used to determine the far field from the near field in the

aperture. Furthermore, the problem space can be reduced by exploiting symmetry.

2. Simulation Methods

2.1 The Finite-Difference Time-Domain Method
The finite-difference time-domain (FDTD) method [6]-[8] is one of the most popular
numerical methods for solving problems in electromagnetics. The time-domain Maxwell’s

equations in free space are given by

JE 1

—=—VxH 1
ot &, 8 (12)
oH 1

—=-—VXE. 1
> P X E ( b)

The FDTD formulation implements these as difference equations, two of which are
E™"(i,j,k+1/2)=E ", jk+1/2)
At-c, H"(i+1/2,j,k+1/2)-H/"(i-1/2,j,k+1/2) 2a)
Ax | —H"@,j+1/2,k+1/2)+H (,j—1/2,k+1/2)
H™(@i+1/2,j+1/2,k)=H"(i+1/2,j+1/2,k)
+At-c0 E"(i+1,j+1/2,k)=E(@i,j+1/2,k) (2b)
Ax |-E"(i+1/2,j+Lk)+E"(i+1/2,j,k) '
Similar equations follow for E , Ey, H_,and Hy fields.

Figure 1(a) is a diagram of a typical experimental setup for spatiotemporal filtering of
THz pulses, and Fig 1(b) shows the region to be simulated. The problem domain must be
broken into cells for simulation in the FDTD method. (We use cubes with the same dimension
in each direction.) Some thought must be given to the size of the cells. We will be dealing with
pulses that have frequency components as high as 1 THz. This corresponds to a wavelength of
300 um. To maintain accuracy under the simulation conditions that we are using, it is desirable
to have a sampling rate of twenty points per wavelength, i. e., a cell size of 15 pm. The high

sampling rate reduces the propagation error [6] and also reduces error due to the “staircasing”




effect that occurs when modeling metal objects with edges that do not lie in one of the
rectangular directions. This means that to simulate a very small area of 4 mm by 7 mm by 4
mm, a problem space of 200x500x200 cells is required. Implementing an FDTD program of
this size would require 400 megawords of core memory in the computer.

To overcome this problem, two techniques can be used: The symmetry of the problem
can be utilized to reduce the simulated space to one fourth, and a transformation can be used
whereby the far field can be determined by the fields in the aperture, eliminating the need to
simulate the far field.

2.2 Symmetry

We use the fourfold symmetry of the aperture to reduce the computational problem
space. The four quadrants are symmetric about the x =0 and y = O planes; therefore, only one
of the four quadrants is simulated. This technique has been used before in FDTD simulation
[91.

2.3 The Near-Field to Far-Field Transformation

The diffracted pulse from the aperture is observed in the radiating far field. To include
the far field in our computation, a large amount of computer memory is required; however, by
implementing the near-field to far-field transformation described in a previous paper [10], the
required computational space is dramatically reduced. In this transformation, the FDTD-
computed time domain data at the end of the aperture is used to calculated the far-field values
(Fig. 2). A brief description follows.

We start with the vector potential

— jkR

A= ﬁjsts(r' )erS' ©)

where R =|F - 7|. The H field due to the electric current density J is obtained by
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where 7 =rxx+’yy+’12=m and |R|=[(x—x') +(y—y) +z ] . Using the duality principle,

the E field due to the magnetic current density M is given by

g=_1 H(M(r‘ )X f)( jk +—1—)£_—jidv' . (5)
4 R/ R

For an x-polarized incident plane wave, the direction normal to the aperture is the z direction, so

M =2E, xn
ao . (6)
=2E xx7=-2E)y,
where E, is the field in the aperture. Hence,
1 1\e ™
E=— 2E (r)yxr) jk+— ds' 7
2 ,,J,;[( ()3 )(1 R) = ™
and
§x7=(rz—r3). ®)
Therefore, the x-polarized E field is given by
1 e 1 e
E=— || nE,(r)jk dSs'+— || r,E (r')——dS". 9
MH QY Mﬂ QR ©
Taking this into the sampled time domain, we get the following equation:
.. 1 del _E'"({,j,n—2-R,)
Erijk)=—3.Dn, : =
R e
1 E"({@,J 2-R,) (10)
o \UsJ o Iy,
+ —_—
2r Z’;rz R

where E"(7',j ,n—2- R, )is the time-retarded field at the end of the aperture, and




del _E"(i,j,n=2-R,)=E'({,j,n—1-2-R,). (11
More details are given in [10].

Since symmetry is being used, for every point in the plane at the end of the aperture,
there exist three other points in the other three quadrants that must be considered to obtain the
true transformation. As can be seen from Fig. 3, the point P,, which is in the simulated
quadrant, has symmetry points P,, P,, and P,. The E field values in the aperture at the four
points are the same, but the distances to the far-field observation point to each of these four
symmetric points is not the same. Hence, when implementing the transformation along with the
symmetry, this has to be taken into account.

Using the two techniques described above, we reduce the sample problem that required
a domain of 200x400x200 cells to a domain of 100x200x100 cells that requires only 26
megawords of core computer memory. The simulated problem domain is shown in Fig. 4. The
near-field to far-field transformation reduces the problem space to a small area around the
aperture, and the use of symmetry further reduces the problem space by seventy-five percent.
Note that every side of the problem space, except the symmetry planes, has a twelve cell

perfectly matched layer (PML) to absorb outgoing scattered waves [11].

3. Verification

To verify the accuracy of the results obtained from the three-dimensional simulation
using the symmetry and the transformation techniques, we compare the resulting pulses from
the full FDTD simulation with those obtained using the transformation techniques. A Gaussian
pulse with a spread of 0.375 picoseconds (or 15 time steps) is diffracted through a rectangular
aperture of thickness 1.00 mm and width of 0.5 mm. Comparisons are made at selected points
[Fig. 1(b)]. Figures 5(a) and 5(b) show the comparison on-axis at distances of 0.24 mm and
1.5 mm respectively from the aperture. Figures 6(a) and 6(b) show the comparison at off-axis

distances of 0.45 mm in the y-direction and x-direction, respectively.




To verify the method against experimental data, we simulate the setup described by
Bromage, et al [4], who generated an incident pulse by the illumination of a GaAs wafer with a
Ti:sapphire laser operating at 810 nm. The resulting pulse is shown in Fig. 7(a). This was
filtered by a rectangular aperture of thickness 1.7 mm and a width of 0.5 mm. For comparison,
the resulting pulse and the filtering aperture were simulated. The results, shown in Fig. 7(b),
are in good agreement. The reconstructed incident pulse in Fig. 7(a) was used for all

subsequent simulations in this paper.

4. Aperture Simulation

In this section, we use the three-dimensional simulation program to evaluate the pulse
shaping characteristic from different apertures. We begin with a rectangular aperture and
evaluate the effects of the various parameters. We then look at other tapered and circular
apertures for comparison.

The specific parameters of the rectangular aperture are the thickness (1) in the z direction,
the width (d) in the y direction, and the height (h) in the x direction (Fig. 4). All the observation
points in this section are at a distance of 7 mm from the aperture. The results for the pulses
obtained by varying the thickness and the width of the aperture were found to be in accordance
with the results shown in the paper by Bromage, et al. [4]. When d = 0.5 mm and # = 0.15
mm, we observe that as the thickness increased, considerable pulse shaping occurs (Fig. 8).
Furthermore, the ringing increases due to the fact that the aperture acts as a resonating cavity
with increasing thickness. Also for / of 0.23 mm and & of 0.15 mm, as the width increases,
narrower pulses are obtained as shown in Fig. 9. This is can be explained by the following:
for a rectangular waveguide the width d, the cut-off frequency in free space is given by [12]:

c

fe=57

As the height of the aperture is increased, we found that only the amplitude of the resulting

pulse increased.




The three-dimensional capability was particularly useful in simulating shapes that could
not adequately be represented in two-dimensions. Now a tapered aperture can be simulated, as
shown in Fig. 10. The resulting pulse after passing through a tapered aperture like Fig. 10 is
shown in Fig. 11(a). Another simulation used an aperture tapered on both edges; the resulting
pulse is shown in Fig. 11(b). The results of the tapered apertures show pulses that die out
smoothly without excessive ringing, as opposed to the untapered rectangular apertures.

The use of a circular aperture was also investigated. After a process of varying
parameters, similar to the procedure using the rectangular aperture, we found that a conical
shaped aperture (Fig. 12) gave the pulse shapes of Fig. 13. These shapes are very appealing,
particularly Fig. 13(a), because they present a couple of very smooth cycles without ringing.
However, they do nothing to eliminate the secondary pulse.

Which of the above pulses is best depends upon the application. It was our intention to
demonstrate the versatility of the method and the wide variety of pulses that can be obtained

with various apertures.

5. Conclusion

In this paper, we carried out three-dimensional simulations of THz spatiotemporal pulse
shaping. The computations exploit the symmetry of the problem and a transformation that lets
one determine the far field from the fields in the aperture. We also demonstrated that three-
dimensional simulation provides a more complete description than two-dimensional simulation
because three-dimensional simulation allows the simulation of all parameters in a wider variety
of structures. Such simulations facilitate the exploration of pulse shapes achievable in complex,
though technologically feasible, geometries. In particular, the full vector nature of the
simulations allows for the accurate presentation of pulse shapes far from the propagation axis

where scalar techniques are known to fail.
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Captions

Filtering of THz pulses: (a) Experimental setup, (b) Problem domain to be
simulated. The parameters / and d are the length and thickness of the aperture,

respectively.

The electric field in the aperture E(x',y') can be used to calculate the far field

E, (x,y). The aperture A is an opening in a metal plate that lies in the XY plane.

The distances from the four symmetric points in the plane containing the aperture to
the far-field observation point are not the same, even though the E field values at the

four points are equal.

Diagram of the reduced FDTD problem space. By using the near- to far-field
transformation, any point in the far field can be calculated by the values in the
aperture. Furthermore, by using symmetry, only one-fourth of the problem is
simulated.

Comparison of the waveforms determined by the FDTD simulation directly (solid
line) versus those determined by the transformation (dashed line). A plane wave
Gaussian pulse of 0.375 picoseconds was passed through a rectangular aperture
with a thickness of 1 mm and a width of 0.5 mm. The waveforms are at observation
points perpendicular to the center axis (z direction) at distances of 0.24 mm (a) and
1.5 mm (b).

Comparison of the waveforms determined by the FDTD simulation directly (solid
line) versus those determined by the transformation (dashed line). A plane wave
Gaussian pulse of 0.375 picoseconds was passed through a rectangular aperture
with a thickness of 1 mm and a width of 0.5 mm. The waveforms are at observation
points 1.5 mm away in the z direction, but offset 4.5 mm in the y-direction (a) and
x-direction (b).

Comparison of simulated versus the experimental data of Bromage, et al. [4]. (a) is
the incident pulse and (b) is the resulting waveform after a rectangular aperture of
1.7 mm thickness and 0.5 mm width.

Resulting waveforms obtained by varying the thickness of a rectangular aperture
with a width of 0.5 mm and a height of 0.15 mm.

Resulting waveforms obtained by varying the gap width of a rectangular aperture
with a thickness of 0.225 mm and a height of 0.15 mm.
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Figure 10. A tapered aperture.

Figure 11. Waveforms resulting from apertures tapered on one side (a) similar to Fig. 10, or

tapered on both sides (b).

Figure 12. A circular aperture.

Figure 13 Waveforms resulting from circular apertures: () major radius 0.225 mm and a
thickness of 0.15 mm, (b) major radius 0 .525 mm and thickness of 0.3 mm.
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Figure 1. Filtering of THz pulses: (a) Experimental set up, (b) Problem domain to be simulated.

The paramters / and d are the length and thickness of the aperture, respectively.
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Figure 2. The electric field in the aperture E(x',y") can be used to

calculate the far field Ef(x,y,z). The aperture A is an opening in

a metal plate that lies in the XY plane.
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Figure 3. The distances from the four symmetric points in the plane

containing the aperture to the far-field observation point are not the

same, evan though the E field values at the four points are equal.
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Figure 4. Diagram of the reduced FDTD problem space. By using
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calculated by the values in the aperture. Furthermore, by using

symmetry, only one-forth of the problem is simulated.
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Figure 5. Comparison of the waveforms determined by the FDTD simulation directly

(solid lines) versus those determined by the transformation (dashed line). A plane wave

Gaussian pulse of 0.375 picoseconds was passed through a rectangular aperture with a

thickness of 1 mm and a width of 0.5 mm. The waveforms are at observation points

perpendicular to the center axis (z direction) at distances of 0.24 mm (a) and 1.5 mm (b).
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Figure 6. Comparison of the waveforms determined by the FDTD simulation directly
(solid lines) versus those determined by the transformation (dashed line). A plane wave
Gaussian pulse of 0.375 picoseconds was passed through a rectangular aperture with a
thickness of 1 mm and a width of 0.5 mm. The waveforms are at observation points 1.5

mm away in the z direction, but offset .45 mm in the y direction (a) and x-direction (b).
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Figure 7. Comparison of simulated versus experimental data of Bromage, et al. [4]. (a) is the
incident pulse and (b) is the resulting wvaeform after a rectangular aperture of 1.7 mm thickness

and 0.5 mm width.
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Figure 8. Resulting waveforms obtained by varying the thickness of a rectangular aperture

witha width of 0.5 mm and a heightof 0.15 mm.
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Figure 9. Resultingwaveforms obtained by varying the gap width of a rectangular aperture with

a thickness of 0.225 mm and a height of 0.15 mm.
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